翻訳と辞書
Words near each other
・ Belesvara Siva Temple
・ Beleswar Temple
・ Belet
・ Belet-Seri
・ Beleth
・ Beletin River
・ Beletinec
・ Beletski
・ Belette
・ Beleuta Svita
・ Beleutoceras
・ Belev dol
・ Belevehchevo
・ Belevi
・ Belevi Mausoleum
Belevitch's theorem
・ Belevren
・ Belew
・ Belewa
・ Belews Creek
・ Belews Creek Power Station
・ Belews Creek Township, Forsyth County, North Carolina
・ Belews Creek, North Carolina
・ Belews Lake
・ BELEX15
・ BELEXline
・ Beleymas
・ Beleza Pura
・ Belezma National Park
・ Belezma Range


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Belevitch's theorem : ウィキペディア英語版
Belevitch's theorem
Belevitch's theorem is a theorem in electrical network analysis due to the Russo-Belgian mathematician Vitold Belevitch (1921–1999). The theorem provides a test for a given S-matrix to determine whether or not it can be constructed as a lossless rational two-port network.
Lossless implies that the network contains only inductances and capacitances - no resistances. Rational (meaning the driving point impedance ''Z''(''p'') is a rational function of ''p'') implies that the network consists solely of discrete elements (inductors and capacitors only - no distributed elements).
==The theorem==
For a given S-matrix \mathbf S(p) of degree d;
: \mathbf S(p) = \begin s_ & s_ \\ s_ & s_ \end
:where,
:''p'' is the complex frequency variable and may be replaced by i \omega in the case of steady state sine wave signals, that is, where only a Fourier analysis is required
:''d'' will equate to the number of elements (inductors and capacitors) in the network, if such network exists.
Belevitch's theorem states that, \scriptstyle \mathbf S(p) represents a lossless rational network if and only if,〔Rockmore ''et al.'', pp.35-36〕
: \mathbf S(p) = \frac \begin h(p) & f(p) \\ \pm f(-p) & \mp h(-p) \end
:where,
:f(p), g(p) and h(p) are real polynomials
:g(p) is a strict Hurwitz polynomial of degree not exceeding d
:g(p)g(-p) = f(p)f(-p) + h(p)h(-p) for all \scriptstyle p \, \in \, \mathbb C .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Belevitch's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.